Learning the Cost Function for Foothold Selection in a Quadruped Robot
نویسندگان
چکیده
منابع مشابه
the test for adverse selection in life insurance market: the case of mellat insurance company
انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...
15 صفحه اولLearning Compliant Locomotion on a Quadruped Robot
Over the last decades, compliant locomotion and manipulation have become a very active field of research, due to the versatility that robots with such capabilities would offer in many applications. With very few exceptions, generally, robotic applications and experiments take place in controlled environments. One of the reasons of this limited use is that in real world scenarios, robots need to...
متن کاملA Foothold Selection Algorithm for Spider Robot Locomotion in Planar Tunnel Environments
In this paper we present an algorithm, called the partitioned cubes gaiting (PCG) algorithm, for planning the foothold positions of spider-like robots in planar tunnels bounded by piecewise linear walls. The paper focuses on three-limb robots, but the algorithm generalizes to robots with a larger number of limbs. The input to the PCG algorithm is a geometric description of the tunnel, a lower b...
متن کاملPCG: a foothold selection algorithm for spider robot locomotion in 2D tunnels
This paper presents an algorithm, called PCG, for planning the foothold positions of spider-like robots in planar tunnels bounded by piecewise linear walls. The paper focuses on 3-limb robots, but the algorithm generalizes to robots with a higher number of limbs. The input to the PCG algorithm is a description of a tunnel having an arbitrary piecewise linear geometry, a lower bound on the amoun...
متن کاملQuadruped robot obstacle negotiation via reinforcement learning
Legged robots can, in principle, traverse a large variety of obstacles and terrains. In this paper, we describe a successful application of reinforcement learning algorithm to the problem of negotiating obstacles with a quadruped robot. Our algorithm is based on a two-level hierarchical decomposition of the task, in which the high-level controller selects the sequence of foot-placement position...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2019
ISSN: 1424-8220
DOI: 10.3390/s19061292